42 research outputs found

    Stable Multiscale Petrov-Galerkin Finite Element Method for High Frequency Acoustic Scattering

    Full text link
    We present and analyze a pollution-free Petrov-Galerkin multiscale finite element method for the Helmholtz problem with large wave number κ\kappa as a variant of [Peterseim, ArXiv:1411.1944, 2014]. We use standard continuous Q1Q_1 finite elements at a coarse discretization scale HH as trial functions, whereas the test functions are computed as the solutions of local problems at a finer scale hh. The diameter of the support of the test functions behaves like mHmH for some oversampling parameter mm. Provided mm is of the order of log(κ)\log(\kappa) and hh is sufficiently small, the resulting method is stable and quasi-optimal in the regime where HH is proportional to κ1\kappa^{-1}. In homogeneous (or more general periodic) media, the fine scale test functions depend only on local mesh-configurations. Therefore, the seemingly high cost for the computation of the test functions can be drastically reduced on structured meshes. We present numerical experiments in two and three space dimensions.Comment: The version coincides with v3. We only resized some figures which were difficult to process for certain printer

    The adaptive finite element method

    Get PDF
    Computer simulations of many physical phenomena rely on approximations by models with a finite number of unknowns. The number of these parameters determines the computational effort needed for the simulation. On the other hand, a larger number of unknowns can improve the precision of the simulation. The adaptive finite element method (AFEM) is an algorithm for optimizing the choice of parameters so accurate simulation results can be obtained with as little computational effort as possible

    Numerical approximation of planar oblique derivative problems in nondivergence form

    Get PDF
    A numerical method for approximating a uniformly elliptic oblique derivative problem in two-dimensional simply-connected domains is proposed. The numerical scheme employs a mixed formulation with piecewise affine functions on curved finite element domains. The direct approximation of the gradient of the solution turns the oblique derivative boundary condition into an oblique direction condition. A priori and a posteriori error estimates as well as numerical computations on uniform and adaptive meshes are provided

    Numerical homogenization of H(curl)-problems

    Get PDF
    If an elliptic differential operator associated with an H(curl)\mathbf{H}(\mathrm{curl})-problem involves rough (rapidly varying) coefficients, then solutions to the corresponding H(curl)\mathbf{H}(\mathrm{curl})-problem admit typically very low regularity, which leads to arbitrarily bad convergence rates for conventional numerical schemes. The goal of this paper is to show that the missing regularity can be compensated through a corrector operator. More precisely, we consider the lowest order N\'ed\'elec finite element space and show the existence of a linear corrector operator with four central properties: it is computable, H(curl)\mathbf{H}(\mathrm{curl})-stable, quasi-local and allows for a correction of coarse finite element functions so that first-order estimates (in terms of the coarse mesh-size) in the H(curl)\mathbf{H}(\mathrm{curl}) norm are obtained provided the right-hand side belongs to H(div)\mathbf{H}(\mathrm{div}). With these four properties, a practical application is to construct generalized finite element spaces which can be straightforwardly used in a Galerkin method. In particular, this characterizes a homogenized solution and a first order corrector, including corresponding quantitative error estimates without the requirement of scale separation

    Numerical stochastic homogenization by quasilocal effective diffusion tensors

    Get PDF
    This paper proposes a numerical upscaling procedure for elliptic boundary value problems with diffusion tensors that vary randomly on small scales. The resulting effective deterministic model is given through a quasilocal discrete integral operator, which can be further compressed to an effective partial differential operator. Error estimates consisting of a priori and a posteriori terms are provided that allow one to quantify the impact of uncertainty in the diffusion coefficient on the expected effective response of the process

    Localized implicit time stepping for the wave equation

    Full text link
    This work proposes a discretization of the acoustic wave equation with possibly oscillatory coefficients based on a superposition of discrete solutions to spatially localized subproblems computed with an implicit time discretization. Based on exponentially decaying entries of the global system matrices and an appropriate partition of unity, it is proved that the superposition of localized solutions is appropriately close to the solution of the (global) implicit scheme. It is thereby justified that the localized (and especially parallel) computation on multiple overlapping subdomains is reasonable. Moreover, a re-start is introduced after a certain amount of time steps to maintain a moderate overlap of the subdomains. Overall, the approach may be understood as a domain decomposition strategy (in space and time) that completely avoids inner iterations. Numerical examples are presented
    corecore